Investigating Sensory Equivalence of Reformulated Products

Benoît Rousseau¹ & John Cowden² ¹The Institute for Perception, Richmond, VA ²General Mills, Minneapolis, MN

IFT Wellness 13

Five Factors for Sensory Matching

Benoît Rousseau & John M. Ennis The Institute for Perception, Richmond, VA

FT. Wellness 13

Why Discrimination Testing?

- Measure the size of the difference between products
- Two main objectives
 - Prove products are different
 - "New and improved", "Fresher, crisper taste"
 - Prove products are equivalent
 - Ingredient change, new supplier, government regulation (e.g., salt or sugar reduction)

 Use discrimination testing to measure small sensory differences

lellness.13

Common Sensory Discrimination Methods

Many different protocols are available:

Information regarding the sample to be selected not required					
Triangle		Which one is different?			
Duo-trio		Which one is the same as the reference ?			
Tetrad		Group the samples into 2 groups of 2 identical sample			
Same-different	or	Are they the same or different ?			
*					
Information regarding the sample to be selected required					
☆ 2-AFC		Which one is more ?			
Identification	— or —	Is it A or B ?			
*					

Sensory Discrimination Program

- 5 linked components:
- <u>α</u>: Probability of a Type I error (wrongly concluding that a difference exists between the products)
- <u>β</u>: Probability of a Type II error (wrongly concluding that no difference exists between the products = 1-power)

or

 $\underline{\delta}$: Size of the difference of interest

N: Sample size

Testing Protocol

α: Type I Error

- Falsely concluding that the products are different when they are not
- Consequence:
 - Prove products are equivalent
 - Ingredient change, new supplier, government regulation (e.g., salt or sugar reduction)
 - Conclude a difference

 \rightarrow Missed an opportunity for change

IFT | Wellness. 13

β: Type II Error (1 – power)

11/37

12/37

Type II Error

- Falsely concluding that the products are not different when they are; failing to find a difference
- Consequence:
 - Prove products are equivalent
 - Ingredient change, new supplier, government regulation (e.g., salt or sugar reduction)
 - Conclude similarity → Release on the market of a sensorially different product

Size of the Relevant Difference

IFT Wellness 13

Comments on Sensory Differences

IFT | Wellness 13

Estimating the Size of a Relevant Difference

- No universal answer
- Research is necessary
- Various options
 - Measuring inter factory differences

- Use the same-different test
 - Estimate the size of the sensory difference above which consumers call the products 'Different"
- Build a relationship between perceived differences and consumer preferences

"Are they the same or different?"

Sample Size

IFT Wellness 13

17/37

Effect of Sample size on Discrimination

- Greater sample sizes provide greater statistical power
- Example: One study, no significance difference found
 - 5 panelists

 i
 i
 performing one triangle
 vs.
 - 500 panelists
 performing one triangle
 i

- Larger sample sizes are less likely to miss sensory differences
- The sample size is a function of α, β, the size of the difference of interest and the test methodology

Test Protocol

19/37

Common Sensory Discrimination Methods

Many different protocols are available:

Information regarding the sample to be selected not required					
Triangle		Which one is different?			
Duo-trio		Which one is the same as the reference ?			
Tetrad		Group the samples into 2 groups of 2 identical samples			
Same-different	or T	Are they the same or different ?			
*					
Information regarding the sample to be selected required					
☆ 2-AFC		Which one is more ?			
Identification	— or —	Is it A or B ?			
*					

Tetrad vs. Triangle An Industry Perspective

John Cowden, Suzanne Pecore, Nort Holschuh, Amalie Kurzer, General Mills February 27, 2013

FT. Wellness 13

Talk Overview

- Background/test primer
- Sensitivity comparison
- Peek into reproducibility
- Tetrad to manage risk

IFT Wellness 13

22

Background

- General Mills has a long standing history of using discrimination testing to guide product and processing reformulation changes.
- To date, triangle testing has been used to manage risk for blind product changes.
- Though the triangle method is inexpensive, obtaining adequate product and maintaining a large pool of motivated panelists is challenging.
- Tetrad shows promise to replace triangle methods and overcome current challenges of triangle.

23

Test Primer, Triangle vs. Tetrad

Triangle

24

- Panelists select the different sample
- Sequential monadic
- Outcome is who got pairing correct, p=1/3 by luck

Tetrad

- Panelists group 4 samples into 2 pairs
- Side-by-side comparison
- Outcome is who got pairing correct, p=1/3 by luck

Comparing The Psychological Task

Respondents More Likely To Find A Difference In Tetrad

1 0.9 **Probability Correct** 0.8 0.7 Tetrad 0.6 Triangle The tetrad has more power 0.5 0.5 and is more sensitive to detecting differences with the same sample size N=100 0.4 0.3 2 3 5 0 6 1 4 ď

d' is the way to compare multiple discrimination tests to one another and can be thought of as the amount of difference between test and control products

- David HA, Trivedi MC. Blacksburg, Va.: Virginia Polytechnic Insti; 1962. Pair, triangle and duo–trio tests. Technical report nr 55, Dept. of Statistics - Ennis, J. M., Ennis, D. M., Yip, D. and O'Mahony, M. (1998). Thurstonian models for variants of the method of tetrads. *British Journal of Mathematical and Statistical Psychology*, **51**(2), 205-215.

26

Comparing Sensitivity in Practice

Products Run as Both A Triangle (Δ) and a Tetrad (\Box)

Difference	
Flavor	
Texture/Flavor	
Texture	
Texture	
Flavor	

IFT Wellness 13

27

Tetrad Is Consistently More Sensitive Than Triangle

Product	Method	True Discriminators	Sample Size
Concel 1	Triangle ∆	11%	69
Cereal 1	Tetrad 🗆	8%	72
Correct 2	Triangle ∆	0%	67
Cereal Z	Tetrad 🗆	18%	72
Corool 2	Triangle ∆	3%	68
Cerear 5	Tetrad 🗆	19%	67
Pakad Cood 1	Triangle ∆	19%	70
Dakeu Goou I	Tetrad 🗆	24%	69
Paked Good 2	Triangle ∆	8%	72
Dakeu Goou Z	Tetrad 🗆	19%	72
Dainy 1	Triangle Δ	8%	70
Dall y 1	Tetrad 🗆	10%	72
Dairy 2	Triangle Δ	8%	70
Dall y Z	Tetrad 🗆	26%	72
Spicy Meal 1	Triangle Δ	11%	69
Spicy wear 1	Tetrad 🗆	20%	63
Spicy Meal 2	Triangle Δ	19%	67
Spicy wiear 2	Tetrad 🗆	68%	66
7		ĬF	T Well

Tetrad No More Fatiguing Than Triangle

Tetrad is Repeatable and Conservative

30

Repeated Tetrad							
Rep	N	Correct	True Discriminators				
1	30	15	25				
2	31	11	3				
3	30	14	20				
4	30	14	20				
5	31	13	13				
6	30	15	25				
7	30	11	5				
8	30	14	20				
9	30	16	30				
10	30	13	15				
Δν	17.6						

Chi-square test for differences in true discriminator across tests is not significant (p =0.9314)

IFT Wellness 13

Repeated Tetrad

Tetrad Manages Risk Better Than Triangle

With Fewer Respondents

Implications for Replacing Triangle

- The tetrad requires <u>fewer panelists</u> for the same risk profile as current triangle.
 - Less product required for test = easier for R&D to make samples
 - Fewer respondents = less employee panelist and testing time
 - Less complex for lab to execute = increased testing capacity

Benefit of Tetrad Fewer Respondents

Tetrad n=45

Triangle n=72

Conclusion Establishing Sensory Equivalence

IFT Wellness 13

The Cost of Decision Rules (1)

34/37

The Cost of Decision Rules (2)

IFT Wellness 13

36/37

Investigating Sensory Equivalence of Reformulated Products

Benoît Rousseau¹ & John Cowden² ¹The Institute for Perception, Richmond, VA ²General Mills, Minneapolis, MN

IFT. Wellness. 13

Thank You Very Much! Any Questions?