Joint Statistical Meetings August 2, 2009 Washington, DC

Lower Bounds for Multiplicative Comparisons

John M. Ennis

The Institute for Perception
E-mail: mail@ifpress.com
Phone: (804) 6752980

\section*{| \circ |
| :--- |
| |
| 0 |
| 0 |
| 0 |
 Comparative statements}

Compared to a competitor...

Carpet treatment reduces malodor five times better
Tooth whitening treatment is twice as effective
Air freshener lasts 20\% longer
Cleaning product performs up to 30\% better

What is statistical justification?

\section*{| \circ |
| :--- |
| |
| \circ |
| \circ |
| \circ |
 Ratio approach}

Ennis et al. (2008). Confidence Bounds for Positive Ratios of Normal Random Variables. CIS, 37, 307-317

$$
X / Y>c>0
$$

Extends Fieller (1932) Conditioned on Y positive

Consider $\mathrm{P}(X / Y>c \mid Y>0)$

0 0 0 0 0
 Problem with ratio approach

Competitive advantage lost when $X>0$ and $Y<0$

\circ 0 0 0 0
 Multiplicative approach

Ennis, J. and Ennis D. Confidence Bounds for Multiplicative Comparisons. CIS (Submitted)

$$
X>c Y, c>0
$$

Improves Ennis et al. (2008) No conditions on Y

$$
\text { Consider } \mathrm{P}(X>\mathrm{cY} \text { and } X>0)
$$

\circ 0 0 0 0
 Finding a lower confidence bound

To find a lower (1- α) confidence bound we solve

$$
\mathrm{P}(X>c Y \text { and } X>0)=1-\alpha
$$

Note that $\mathrm{P}(X>c Y$ and $X>0)$ can be computed as

$$
\int_{0}^{\infty} \int_{0}^{\infty} f(\mathbf{x}) d \mathbf{x}
$$

using $\mathrm{P}(X>c Y$ and $X>0)=\mathrm{P}(X-c Y>0$ and $X>0)$

\circ 0 0 0 0
 A single integral expression

$\mathrm{P}(X>c Y$ and $X>0)$ can also be computed using a single integral expression (c.f. Ennis et al. (2008))

$$
\int_{0}^{\infty} \int_{0}^{\infty} f(\mathbf{x}) d \mathbf{x}=\int_{0}^{\rho} g\left(\mu_{1}, \mu_{2} ; t\right) d t+\Phi\left(\mu_{1}\right) \Phi\left(\mu_{2}\right)
$$

$$
\text { where } \quad \rho=\frac{\sigma_{x}^{2}-c \operatorname{Cov}_{x y}}{\sqrt{\left(\sigma_{x}^{2}+c^{2} \sigma_{y}^{2}-2 c \operatorname{Cov}_{x y}\right) \sigma_{x}^{2}}} \text {, }
$$

$$
\mu_{1}=\frac{\mu_{x}-c \mu_{y}}{\sqrt{\sigma_{x}^{2}+c^{2} \sigma_{y}^{2}-2 c C o v_{x y}}} \text { and } \mu_{2}=\frac{\mu_{x}}{\sigma_{x}}
$$

\section*{| \circ |
| :--- |
| |
| 0 |
| 0 |
| 0 |
 Malodor reduction example}

Two groups of 100 consumers
Each consumer performs a single 2-alternative forced choice (2-AFC) trial

Condition	Frequencies	d^{\prime}	Variance
Malodor $/$ Malodor $+X$	$85 / 15$	1.47	0.047
Malodor $/$ Malodor $+Y$	$55 / 45$	0.18	0.032

Convert to d' to obtain differences on an interval scale (Thurstone 1927)
Variance in estimates can also be calculated using maximum likelihood

\circ 0 0 0 0
 Malodor reduction example

Condition	d^{\prime}	Variance
Malodor + Air Freshener X	1.47	0.047
Malodor + Air Freshener Y	0.18	0.032

Consider $\mathrm{P}(X>c Y$ and $X>0)$
Multiplicative:
Ratio: 2.85
Point Estimate: $8.17=1.47 / 0.18$

\section*{| \circ |
| :--- |
| |
| 0 |
| 0 |
| 0 |
 Ratio vs. multiplicative statements}

Ratio statements

Interpreted as $X / Y>c>0$

Conditioned on Y positive

Consider $\mathrm{P}(X / Y>c \mid Y>0)$

Details in Ennis et al. (2008)

Extends Fieller (1932)

Multiplicative statements

Interpreted as $X>c Y, c>0$

No conditions on Y

Consider $\mathrm{P}(X>c Y$ and $X>0)$

Details in Ennis and Ennis (Subm.)

Improves Ennis et al. (2008)

Joint Statistical Meetings August 2, 2009
 Washington, DC

Thanlk You

John ML. Ennis

The Institute for Perception
E-mail: mail@ifpress.com
Phone: (804) 6752980

