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Background:  In previous technical reports1 we discussed 

methods for developing improved rotations for sequential 

testing to remove bias and lower testing variances.  The 

benefit of doing this is to obtain more accurate information 

and to create more powerful tests with the opportunity to 

lower testing cost.  For most designs, the use of the Column 

Randomization and Search (CRAS)1 method has proven to be 

useful for many designs including complete block, incomplete 

block, and testing with sequences containing interruptions, 

such as testing over several days. This method searches for 

position, sequences and the location of sequences in the 

design (called sequence spread) that are not often accounted 

for in the experimental design of product tests, other types of 

surveys and clinical trials.  When they are considered, it is 

common to use Williams Squares2 to control for position and 

sequences but not sequence spread. For instance, if the 

sequence (1 2) occurs at the beginning and end of a Williams 

Square with multiple products, this sequence will never occur 

at the middle of the test and replication will perpetuate this 

condition.  This could be important because performance from 

the beginning to the end of a series of evaluations changes and 

could be different for the sequences as well as the products 

themselves. These designs are replicated when the number of 

rotations needed exceeds the size of the design. It is possible 

to overcome this limitation of replicated Williams Squares so 

that designs based on them can handle sequence spread.  The 

purpose of this technical report is to explore this possibility. 

A Replicated Williams Square with Five Products:  Table 1 

shows an example of a Williams Design with 5 products 

labeled 1 to 5.  There are 5C2 combinations of pairs of

products and twice that number, or 20, if forward and reverse 

orders are considered.   Table 1 shows that there are 10 rows 

because of the need to meet the requirement that the 5 

positions and 20 sequences are accounted for at least once.  In 

this case they each appear twice.  But notice in Table 2 that 

the sequences, e.g. (1 2) are not spread equally across the 

design.

Scenario: You are a data scientist working in a company that 

markets air-care products to homeowners. Sequential effects 

in the evaluation of fragrances often arise and you would like 

to minimize bias and improve precision in central location 

tests.  Some of your suppliers simply randomize the 

presentation order and you are aware that this practice does 

not account for position or sequence effects properly.  Lately 

you have considered using Williams Square designs.  These 

designs are set up so that each product appears an equal 

number of times in each position.  They also ensure that there 

is balance in the frequency with which the sequences occur 

but not their occurrence in the rotations. To improve this 

condition it would be necessary, when replicating the design, 

to consider making sequence  selections with the intent of 

ensuring a balance in the sequence spread. 

Table 1.  A Williams square with 5 products and 10 rotations.  

Each pair and its reverse appears twice in the design and each 

product appears an equal number of times in each position.  

However, the occurrence of sequences in the design is not 

uniform as shown for the sequence (1 2).  

Balancing Sequence Spread:  Table 2 shows the frequency of 

occurrence of sequences across the design of Table 1 and Figure 

1 is a visual guide to Table 2.  Notice that the frequency of 

occurrence of sequences in particular locations form a definite 

pattern.  A design with 10 rotations appended to one that is the 

complement of the pattern in Figure 1 would solve the sequence 

spread limitation for this design.  

1 2 5 3 4
2 3 1 4 5
3 4 2 5 1

4 5 3 1 2
5 1 4 2 3

4 3 5 2 1

5 4 1 3 2
1 5 2 4 3

2 1 3 5 4
3 2 4 1 5

Table 2.  Occurrence of sequences in the design of Table 1. 

Item Sequence Spread

Item Sequence 1-2 2-3 3-4 4-5

(1 2) 1 0 0 1

(1 3) 0 1 1 0

(1 4) 0 1 1 0

(1 5) 1 0 0 1

(2 1) 1 0 0 1

(2 3) 1 0 0 1

(2 4) 0 1 1 0

(2 5) 0 1 1 0

(3 1) 0 1 1 0

(3 2) 1 0 0 1

(3 4) 1 0 0 1

(3 5) 0 1 1 0

(4 1) 0 1 1 0

(4 2) 0 1 1 0

(4 3) 1 0 0 1

(4 5) 1 0 0 1

(5 1) 1 0 0 1

(5 2) 0 1 1 0

(5 3) 0 1 1 0

(5 4) 1 0 0 1

Selecting the Optimal Design: By considering the structure of 

Table 2, you can determine a lower bound on the number of 

subjects needed to achieve perfect balance. A design which fills 

each cell with a 1 will have a variance of zero for position, 

sequence, and sequence spread. In the case of 5 products, you 

would need 20 respondents, twice the amount in the Williams



Item Sequence Spread

Sequence 1-2 2-3 3-4 4-5

(1 2)

(1 3)

(1 4)

(1 5)

(2 1)

(2 3)

(2 4)

(2 5)

(3 1)

(3 2)

(3 4)

(3 5)

(4 1)

(4 2)

(4 3)

(4 5)

(5 1)

(5 2)

(5 3)

(5 4)
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Table 3.  A Williams design with 5 products and 10 

rotations augmented with a design that is the complement 

of the sequence spread counts.  This design perfectly 

controls for sequence spread with a multiple of 20 

participants. 

Figure 1.  Sequence spread counts for the design in Table 1  

(A) and its complement (B).

Design. More generally, as each respondent contributes one 

cell to each column, you would need n * (n – 1) respondents 

where n is the number of products to be evaluated. Finding an 

actual optimal design is a challenging task due to the 

combinatorial nature of the problem, however, solutions have 

been found for many practical problem sizes. Table 3 shows 

one such design for 5 products.

Application to the Fragrance Study Design: You apply this 

approach to the Williams Design in Table 1 and obtain Table 

3. This table can now be replicated and used in the fragrance

CLT.  The plan is to conduct this research with 300 recruited

consumers, over-recruited to ensure at least 300.   There are

15 sets of 20 to make up 300 rotations.  However, there may

be no-shows resulting in a sample size different from 300 and

not an integer multiple of 20.  In order to minimize the impact

of a partial plan, you now consider how the partial sample

should be drawn.

Rationale for Selecting the Final Design Fragment: As the 

final exact number of respondents is unknown, it is desirable 

to have an ordered design where each subsequent row keeps 

the cumulative variance as low as possible. Considering the 

counts, such as those in Table 2, along with graph theoretic 

tools, it is possible to find such an order that minimizes the 

variance of sequences or the variance of sequence spread, but 

not necessarily both. Since the effect of unbalanced sequences 

is expected to be larger than that of sequence spread, you

choose to find a design which minimizes the former. These 

designs can be based on Williams Designs and in this case the 

design has 10 rows. You append these 10 rows to your original 

300 and now have flexibility in the final number of 

respondents while maintaining low variance.

Conclusion: Rotations in tests of multiple items is a practical 

and important step in minimizing bias (getting more accurate 

responses) and improving precision in tests involving 

sequential monadic testing. It is not recommended to rely on 

randomized rotations or even replicated Williams Squares 

when an alternative that can account for sequence spread is 

available. The alternative discussed in this report provides a 

design that controls for all three conditions perfectly if the 

number of participants is a multiple of 20 and a least variance 

solution if the number of participants exceeds this number. 
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Rotation
Position

1
Position

2
Position

3
Position

4
Position

5

1 1 2 5 3 4

2 2 3 1 4 5

3 3 4 2 5 1

4 4 5 3 1 2

5 5 1 4 2 3

6 4 3 5 2 1

7 5 4 1 3 2

8 1 5 2 4 3

9 2 1 3 5 4

10 3 2 4 1 5

11 1 3 4 5 2

12 3 5 1 2 4

13 5 2 3 4 1

14 2 4 5 1 3

15 4 1 2 3 5

16 2 5 4 3 1

17 4 2 1 5 3

18 1 4 3 2 5

19 3 1 5 4 2

20 5 3 2 1 4

Item Sequence Spread

Sequence 1-2 2-3 3-4 4-5

(1 2)

(1 3)

(1 4)

(1 5)

(2 1)

(2 3)

(2 4)

(2 5)

(3 1)

(3 2)

(3 4)

(3 5)

(4 1)

(4 2)

(4 3)

(4 5)

(5 1)

(5 2)

(5 3)

(5 4)
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