

Ratios of Normal Variables in Superiority Claims

Presented By: John M. Ennis The Institute for Perception <u>E-mail</u>: ifpress@cs.com <u>Phone</u>: (804) 675 2980

Ratio Statement Examples

Compared to a competitor...

- Carpet treatment reduces malodor five times better
- > Tooth whitening treatment is twice as effective
- > Air freshener lasts 20% longer
- Cleaning product performs "up to 30%" better

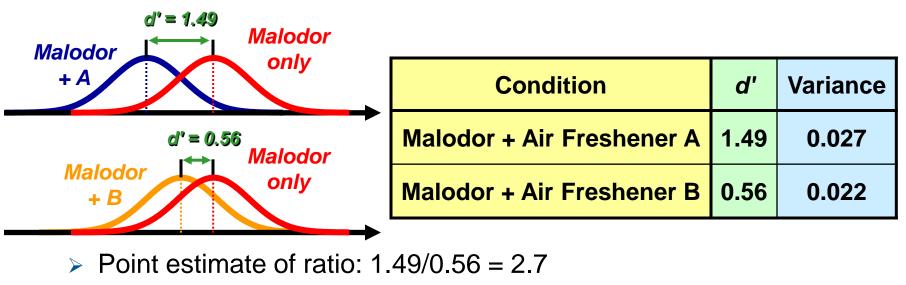
Example: Malodor Reduction Ratio

For each product:

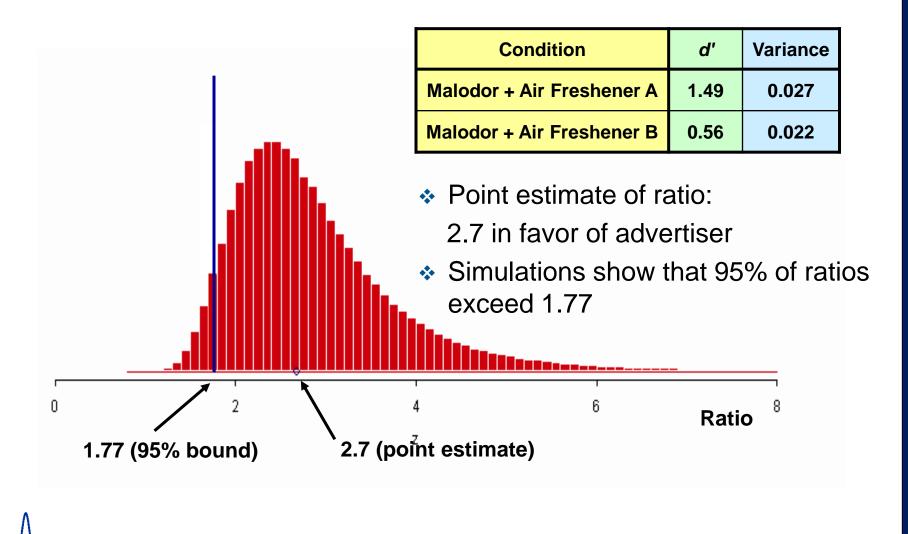
 \mathbf{O}

0

- Application with active ingredient to malodor
- Application without active ingredient to malodor
- Rating based on malodor intensity in odor test chambers
- Use d' values to work with differences on an interval scale



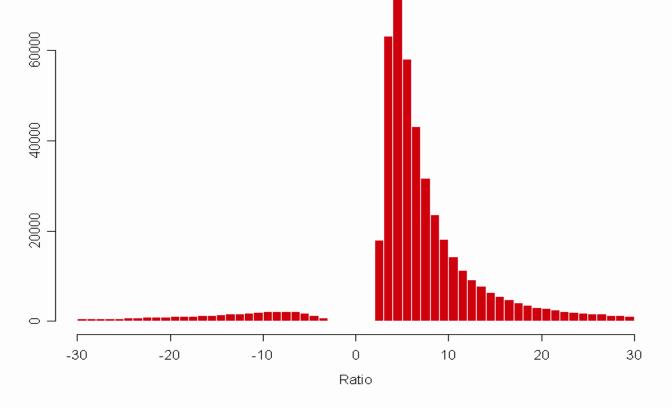
Distribution of Possible Ratios



www.ifpress.com

Finding a Lower Bound in General

- > How to determine lower confidence bound for ratios?
- > How best to handle the occurrence of negative ratios?



www.ifpress.com

Motivation

- Four cases of malodor treatment
- > Two treatments and a malodor control in each case

		Treatm	ent 1				
Case	P _c	ď	Variance of d'	P _c	ď	Variance of d'	Ratio
1	0.85	1.47	0.047	0.65	0.54	0.033	2.72
2	0.85	1.47	0.047	0.55	0.18	0.032	8.17
3	0.60	0.36	0.032	0.55	0.18	0.032	2.00
4	0.55	0.18	0.032	0.52	0.07	0.031	2.67

Want lower 95% confidence bounds in each case

Background – Ratios of Normal RV's

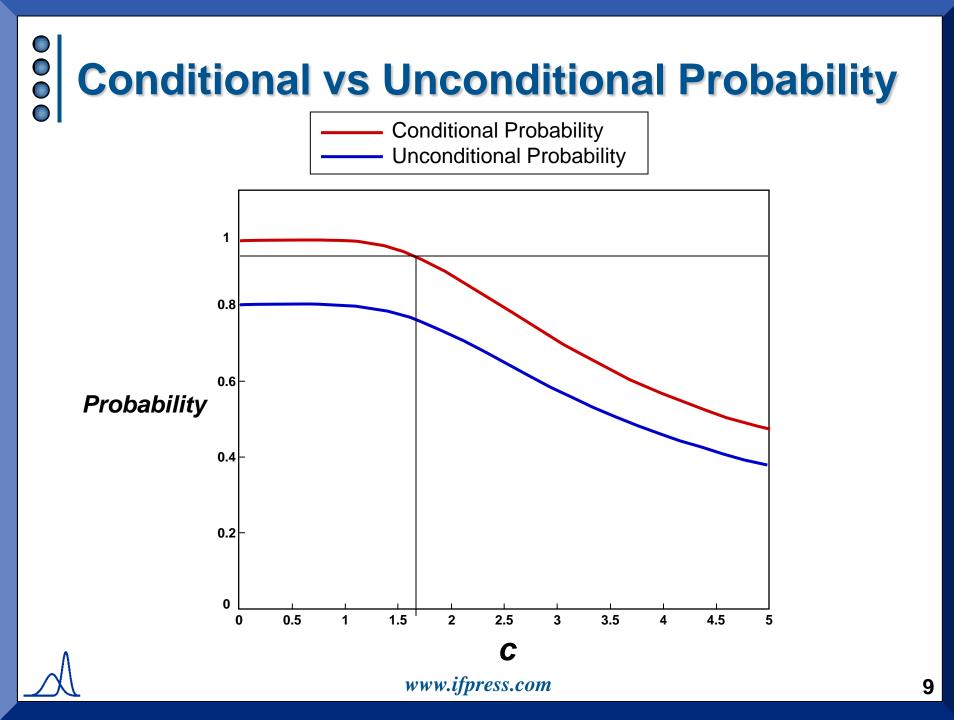
- Geary (1930) First attempts at pdf
- Fieller (1932)
 - Derived the pdf and cdf of X/Y under certain restrictions
 - Showed that moments of the ratio do not exist
 - * Provided an approximation to the cdf when μ_y/σ_y is large
- Marsaglia (1965) Discussed alternative forms
- > Hinkley (1969) Evaluated Fieller's approximation
- > Ennis et al. (2008)
 - Confidence bounds for positive ratios of normal random variables, Communications in Statistics, Theory and Methods 37, 307-317

Probability Statements for Y > 0

> Suppose (*X*, *Y*) is a bivariate normally distributed random variable with mean (μ_x, μ_y) and covariance matrix

$$\begin{pmatrix} \sigma_x^2 & Cov_{xy} \\ Cov_{xy} & \sigma_y^2 \end{pmatrix}$$

Suppose c is a positive constant
Unconditional probability: Pr(X/Y > c and Y > 0)
Conditional probability: Pr(X/Y > c | Y > 0)



$$P(X / Y > c | Y > 0) = \frac{P(X - cY > 0 \text{ and } Y > 0)}{P(Y > 0)}$$

P(X - cY > 0 and Y > 0) involves an integral over a bivariate normal of the form

$$B(\mu_1,\mu_2;\rho) = \int_0^\infty \int_0^\infty f(\mathbf{x}) d\mathbf{x}$$

here
$$\mu_1 = \frac{\mu_x - c\mu_y}{\sqrt{\sigma_x^2 + c^2 \sigma_y^2 - 2cCov_{xy}}}$$
 and $\mu_2 = \frac{\mu_y}{\sigma_y}$

W

Conditional Probability

> The conditional probability can be reduced to

$$P(X / Y > c | Y > 0) = G(\mu_1, \mu_2; c) + \Phi(\mu_1)$$

where G is a single integral expression that tends to 0 as μ_{y}/σ_{y} goes to infinity

> $G(\mu_1, \mu_2; c) + \Phi(\mu_1)$ is a decreasing function of c

> To establish the $(1-\alpha)x100\%$ bound, we solve

$$G(\mu_1, \mu_2; c) + \Phi(\mu_1) = 1 - \alpha$$

We have seen that

$$P(X / Y > c | Y > 0) = G(\mu_1, \mu_2; c) + \Phi(\mu_1)$$

> If μ_v >> σ_v then

 $P(X-cY>0|Y>0) \approx \Phi(\mu_1)$

> $\Phi(\mu_1)$ is Fieller's approximation (c.f. Hinkley)

www.ifpress.com

Confidence Bounds for Examples

		Treatm	ent 1	Treatment 2				
Case	P _c	d′	Variance of d'	P _c	ď	Variance of d'	Ratio	Lower 95% Bound (<i>c</i>)
1	0.85	1.47	0.047	0.65	0.54	0.033	2.72	1.612
2	0.85	1.47	0.047	0.55	0.18	0.032	8.17	2.851
3	0.60	0.36	0.032	0.55	0.18	0.032	2.00	0.257
4	0.55	0.18	0.032	0.52	0.07	0.031	2.67	None

For case 1, the conditional probability and Fieller's approximation are nearly identical

For cases 2, 3 and 4 Fieller's approximation is not appropriate and should not be used

- Classical approaches to confidence bounds for ratios of normally distributed random variables are not always applicable to practical cases that arise in product testing
- > Using a conditional probability approach, a solution to the problem of determining 1α confidence bounds for ratios of normal random variables has been derived
- > This new method is applicable regardless of the relative sizes of of μ_v and σ_v
- The classical approach based on Fieller's approximation is a special case of the new method

For more info: www.ifpress.com

Presented By: John M. Ennis The Institute for Perception <u>E-mail</u>: ifpress@cs.com <u>Phone</u>: (804) 675 2980

